Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
*ecurrent work conducts a comparative study of the waterbed multistage solar still with stacked stages (MSS-SS) and the vapourbased MSS-SS. Various experimental test results obtained from the vapour-based MSS-SS are briefly discussed in comparison with the waterbed MSS-SS reported in the literature. Based on the experimental observations and tests, the stage tray requires no maintenance and upper stages can operate even when the lower stages are nonoperational. About 0.8–41.3% distillate yield dropped from the upper stages when lower stages were exposed to the atmosphere. *e upper stages increased their productivity by 7.1–15.4% when the lower stages were shut off completely. *e waterbed-based MSS-SS preserves and reuses thermal energy much better even during off sunshine hours than the vapour-based system. *e vapour-based MSS-SS is only productive during sunshine hours, and about 97-98% of the distillate is produced during daytime. Furthermore, the vapour based was able to produce 6.3 kg/day on average on the selected days....
The atomic layer deposition (ALD) of Al2O3 between perovskite and the hole transporting material (HTM) PEDOT:PSS has previously been shown to improve the efficiency of perovskite solar cells. However, the costs associated with this technique make it unaffordable. In this work, the deposition of an organic–inorganic PEDOT:PSS-Cl-Al2O3 bilayer is performed by a simple electrochemical technique with a final annealing step, and the performance of this material as HTM in inverted perovskite solar cells is studied. It was found that this material (PEDOT:PSS-Al2O3) improves the solar cell performance by the same mechanisms as Al2O3 obtained by ALD: formation of an additional energy barrier, perovskite passivation, and increase in the open-circuit voltage (Voc) due to suppressed recombination. As a result, the incorporation of the electrochemical Al2O3 increased the cell efficiency from 12.1% to 14.3%. Remarkably, this material led to higher steady-state power conversion efficiency, improving a recurring problem in solar cells....
Energy demand is increasing globally owing to population growth. Solar cell development has gained considerable attention because of its potential to provide everyone with sustainable, affordable, clean, and globally accessible energy. A heterojunction solar device for photovoltaic applications was developed in this study, using nickel oxide (NiO) as the p-type and titanium oxide (TiO2) as the n-type. The material chosen was motivated by the affordability, availability, and performance compared to existing silicon that is more efficient but less affordable and available. The TiO2 and NiO2 were synthesised and characterised before the deposition and characterisation of the solar cells. The characterisation was carried out using Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM), EDX, X-ray Diffraction (XRD), and a four-point probe. The deposition parameters were fine-tuned to achieve optimum optoelectronic properties for the solar device. The final device exhibited an open-circuit voltage of 370 mV, a current density of 1.7 mA, and solar cells efficiency of 3.7....
The defects of solar cell component (SCC) will affect the service life and power generation efficiency. In this paper, the defect images of SCC were taken by the photoluminescence (PL) method and processed by an advanced lightweight convolutional neural network (CNN). Firstly, in order to solve the high pixel SCC image detection, each silicon wafer image was segmented based on local difference extremum of edge projection (LDEEP). Secondly, in order to detect the defects with small size or weak edges in the silicon wafer, an improved lightweight CNN model with deep backbone feature extraction network structure was proposed, as the enhancing feature fusion layer and the three-scale feature prediction layer; the model provided more feature detail. The final experimental results showed that the improved model achieves a good balance between the detection accuracy and detection speed, with the mean average precision (mAP) reaching 87.55%, which was 6.78% higher than the original algorithm. Moreover, the detection speed reached 40 frames per second (fps), which meets requirements of precision and real-time detection. The detection method can better complete the defect detection task of SCC, which lays the foundation for automatic detection of SCC defects....
This study is aimed at scrutinizing the domestic solar energy potential for electricity and hydrogen production. Under the first scenario, it is sought to evaluate electricity generation for household purposes using RSUs (rooftop solar units). Then, under the second scenario, solar hydrogen production is analyzed for the purpose of meeting a hydrogen vehicle demand. For this, one of the aptest cities, Yazd, located in the center of Iran is investigated. Furthermore, a real-world electric load needed by an usual household in Yazd is deemed as the demand for electricity. To analyze the two scenarios, a system consisting of an 8.2kW RSU for power generation, a battery for electricity storage, and a 1kW electrolyzer for hydrogen yield is proposed. Also, to acquire a broader vision, predictions are made for the next 10, 20, 30, and 40 years. The results regarding the first scenario implied that COE (Cost of Electricity) would be, respectively, 0.067, 0.145, 0.136, and 0.127 $/kWh. In addition to supplying the electricity required by the house, 2,687 $/yr could be earned by selling the excess electricity generated, and 5,759 kg of CO2 would be avoided a year. The findings as to the second scenario showed that LCOH (levelized cost of hydrogen) would equate to 3.62, 6.53, 6.34, and 5.93 $/kg, respectively, for the aforementioned project lifetimes. Furthermore, 2,464 $/yr would be the revenue after selling the surplus electricity, and 7,820 kg of CO2 would be saved, annually....
Loading....